The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis.
نویسندگان
چکیده
The rostro-caudal polarity within a somite is primarily determined by the on/off state of Notch signaling, but the mechanism by which Notch is repressed has remained elusive. Here, we present genetic and biochemical evidence that the suppression of Notch signaling is essential for the establishment of rostro-caudal polarity within a somite and that Mesp2 acts as a novel negative regulator of the Notch signaling pathway. We generated a knock-in mouse in which a dominant-negative form of Rbpj is introduced into the Mesp2 locus. Intriguingly, this resulted in an almost complete rescue of the segmental defects in the Mesp2-null mouse. Furthermore, we demonstrate that Mesp2 potently represses Notch signaling by inducing the destabilization of mastermind-like 1, a core regulator of this pathway. Surprisingly, this function of Mesp2 is found to be independent of its function as a transcription factor. Together, these data demonstrate that Mesp2 is a novel component involved in the suppression of Notch target genes.
منابع مشابه
Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression.
Mesp2 is a transcription factor that plays fundamental roles in somitogenesis, and its expression is strictly restricted to the anterior presomitic mesoderm just before segment border formation. The transcriptional on-off cycle is linked to the segmentation clock. In our current study, we show that a T-box transcription factor, Tbx6, is essential for Mesp2 expression. Tbx6 directly binds to the...
متن کاملFunctional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2.
The T-box transcription factor Tbx6 controls the expression of Mesp2, which encodes a basic helix-loop-helix transcription factor that has crucial roles in somitogenesis. In cultured cells, Tbx6 binding to the Mesp2 enhancer region is essential for the activation of Mesp2 by Notch signaling. However, it is not known whether this binding is required in vivo. Here we report that an Mesp2 enhancer...
متن کاملGenetic rescue of segmentation defect in MesP2-deficient mice by MesP1 gene replacement
Gene knock-out and knock-in strategies are employed to investigate the function of MesP1. MesP1 belongs to the same family of bHLH transcription factors as MesP2. The early expression pattern observed in the early mesoderm at the onset of gastrulation is restricted to Mesp1, while the later expression pattern in the anterior presomitic mesoderm during somitogenesis is almost the same for Mesp1 ...
متن کاملOscillatory links of Fgf signaling and Hes7 in the segmentation clock.
Somitogenesis is controlled by the segmentation clock, where the oscillatory expression of cyclic genes such as Hes7 leads to the periodic expression of Mesp2, a master gene for somite formation. Fgf signaling induces the oscillatory expression of Hes7 while Hes7 drives coupled oscillations in Fgf and Notch signaling, which inhibits and activates Mesp2 expression, respectively. Because of diffe...
متن کاملThe negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite.
The Mesp2 transcription factor plays essential roles in segmental border formation and in the establishment of rostro-caudal patterning within a somite. A possible Mesp2 target gene, Ripply2, was identified by microarray as being downregulated in the Mesp2-null mouse. Ripply2 encodes a putative transcriptional co-repressor containing a WRPW motif. We find that Mesp2 binds to the Ripply2 gene en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 138 1 شماره
صفحات -
تاریخ انتشار 2011